Quantitative resistance can lead to evolutionary changes in traits not targeted by the resistance QTLs

نویسندگان

  • Femke Van den Berg
  • Christian Lannou
  • Christopher A Gilligan
  • Frank van de Bosch
چکیده

This paper addresses the general concern in plant pathology that the introduction of quantitative resistance in the landscape can lead to increased pathogenicity. Hereto, we study the hypothetical case of a quantitative trait loci (QTL) acting on pathogen spore production per unit lesion area. To regain its original fitness, the pathogen can break the QTL, restoring its spore production capacity leading to an increased spore production per lesion. Or alternatively, it can increase its lesion size, also leading to an increased spore production per lesion. A data analysis shows that spore production per lesion (affected by the resistance QTL) and lesion size (not targeted by the QTL) are positively correlated traits, suggesting that a change in magnitude of a trait not targeted by the QTL (lesion size) might indirectly affect the targeted trait (spore production per lesion). Secondly, we model the effect of pathogen adaptation towards increased lesion size and analyse its consequences for spore production per lesion. The model calculations show that when the pathogen is unable to overcome the resistance associated QTL, it may compensate for its reduced fitness by indirect selection for increased pathogenicity on both the resistant and susceptible cultivar, but whereby the QTLs remain effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QTL analysis for diamondback moth resistance in canola (Brassica napus L.)

Diamondback moth (DBM), Plutella xylostella L. is the most injurious defoliage insect pest of canola in Ardabil province of Iran. It occurs annually and causes damage in canola fields. This study was performed to identify QTLs controlling resistance to diamondback moth using SSR and RAPD markers. An F2:4 population of 180 families derived from crossing between cv. ‘SLMO46’ and cv. ‘Quantum’ wer...

متن کامل

Sustainable deployment of QTLs conferring quantitative resistance to crops: first lessons from a stochastic model.

Quantitative plant disease resistance is believed to be more durable than qualitative resistance, since it exerts less selective pressure on the pathogens. However, the process of progressive pathogen adaptation to quantitative resistance is poorly understood, which makes it difficult to predict its durability or to derive principles for its sustainable deployment. Here, we study the dynamics o...

متن کامل

Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes str...

متن کامل

A genome scan for selection signatures comparing farmed Atlantic salmon with two wild populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait loci for production traits

Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) ...

متن کامل

Quantitative Trait Locus Analysis of Late Leaf Spot Resistance and Plant-Type-Related Traits in Cultivated Peanut (Arachis hypogaea L.) under Multi-Environments

Late leaf spot (LLS) is one of the most serious foliar diseases affecting peanut worldwide leading to huge yield loss. To understand the genetic basis of LLS and assist breeding in the future, we conducted quantitative trait locus (QTL) analysis for LLS and three plant-type-related traits including height of main stem (HMS), length of the longest branch (LLB) and total number of branches (TNB)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014